Paste together information, often statistics, from two groups. There are two predefined combinations: mean(sd) and median[min,max], but user may also paste any single measure together.

paste_tbl_grp(data, vars_to_paste = "all", first_name = "Group1",
  second_name = "Group2", sep_val = " vs. ", na_str_out = "---",
  alternative = c("two.sided", "less", "greater"), digits = 0,
  trailing_zeros = TRUE, keep_all = TRUE, verbose = FALSE)

Arguments

data

input dataset. User must use consistent naming throughout, with an underscore to separate the group names from the measures (i.e. Group1_mean and Group2_mean). There also must be two columns with column names that exactly match the input for first_name and second_name (i.e. 'Group1' and 'Group2'), which are used to form the Comparison variable.

vars_to_paste

vector of names of common measures to paste together. Can be the predefined 'median_min_max' or 'mean_sd', or any variable as long as they have matching columns for each group (i.e. Group1_MyMeasure and Group2_MyMeasure). Multiple measures can be requested. Default: "all" will run 'median_min_max' and 'mean_sd', as well as any pairs of columns in the proper format.

first_name

name of first group (string before '_') . Default is 'Group1'.

second_name

name of second group (string before '_'). Default is 'Group2'.

sep_val

value to be pasted between the two measures. Default is ' vs. '.

na_str_out

the character to replace missing values with.

alternative

a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less". Will be used to determine the character to be pasted between the group names (Comparison variable). Specifying "two.sided" will use the sep_val input.

digits

integer indicating the number of decimal places to round to before pasting for numeric variables. Default is 0.

trailing_zeros

logical indicating if trailing zeros should be included (i.e. 0.100 instead of 0.1). Note if set to TRUE output is a character vector.

keep_all

logical indicating if all remaining, unpasted variables in data should be returned with the pasted variables. Default TRUE.

verbose

a logical variable indicating if warnings and messages should be displayed. Default FALSE.

Value

data.frame with all the pasted values requested. Each name will have '_comparison' at the end of the names (i.e. mean_comparison, median_comparison, ...)

Details

User must use consistant naming throughout, with a underscore to separate the group names from the measures (i.e. Group1_mean and Group2_mean). There also must be columns defining the group names (i.e. Group1 and Group2), which are used to form the Comparison variable.

alternative included as a parameter so the direction can easily be seen in one-sided test. If "two.sided" is selected the value to be pasted between the two group names will be set to sep_val, where "greater" will use " > " and "less" with use " < " as the pasting value.

Examples

# Same examples on data.table library(data.table)
#> #> Attaching package: ‘data.table’
#> The following objects are masked from ‘package:dplyr’: #> #> between, first, last
data(exampleData_BAMA) descriptive_stats_by_group <- exampleData_BAMA[, .( Group1 = unique(group[group == 1]), Group2 = unique(group[group == 2]), Group1_n = length(magnitude[group == 1]), Group2_n = length(magnitude[group == 2]), Group1_mean = mean(magnitude[group == 1]), Group2_mean = mean(magnitude[group == 2]), Group1_sd = sd(magnitude[group == 1]), Group2_sd = sd(magnitude[group == 2]), Group1_median = median(magnitude[group == 1]), Group2_median = median(magnitude[group == 2]), Group1_min = min(magnitude[group == 1]), Group2_min = min(magnitude[group == 2]), Group1_max = max(magnitude[group == 1]), Group2_max = max(magnitude[group == 2]) ), by = .(visitno,antigen)] paste_tbl_grp(data = descriptive_stats_by_group, vars_to_paste = 'all', first_name = 'Group1', second_name = 'Group2', sep_val = " vs. ", digits = 0, keep_all = TRUE)
#> visitno antigen Comparison n_comparison mean_comparison #> 1 0 A1.con.env03 140 CF 1 vs. 2 6 vs. 6 -2 vs. -5 #> 2 0 A244 D11gp120_avi 1 vs. 2 6 vs. 6 75 vs. 84 #> 3 0 B.63521_D11gp120/293F 1 vs. 2 6 vs. 6 66 vs. 12 #> 4 0 B.MN V3 gp70 1 vs. 2 6 vs. 6 -27 vs. -409 #> 5 0 B.con.env03 140 CF 1 vs. 2 6 vs. 6 21 vs. -2 #> 6 0 gp41 1 vs. 2 6 vs. 6 2017 vs. 3381 #> 7 0 p24 1 vs. 2 6 vs. 6 9010 vs. 5735 #> 8 1 A1.con.env03 140 CF 1 vs. 2 6 vs. 6 1039 vs. 551 #> 9 1 A244 D11gp120_avi 1 vs. 2 6 vs. 6 5655 vs. 1681 #> 10 1 B.63521_D11gp120/293F 1 vs. 2 6 vs. 6 1720 vs. 1577 #> 11 1 B.MN V3 gp70 1 vs. 2 6 vs. 6 140 vs. 303 #> 12 1 B.con.env03 140 CF 1 vs. 2 6 vs. 6 3150 vs. 5153 #> 13 1 gp41 1 vs. 2 6 vs. 6 16324 vs. 22559 #> 14 1 p24 1 vs. 2 6 vs. 6 6745 vs. 3880 #> 15 2 A1.con.env03 140 CF 1 vs. 2 6 vs. 6 15462 vs. 11600 #> 16 2 A244 D11gp120_avi 1 vs. 2 6 vs. 6 29700 vs. 27448 #> 17 2 B.63521_D11gp120/293F 1 vs. 2 6 vs. 6 26839 vs. 26388 #> 18 2 B.MN V3 gp70 1 vs. 2 6 vs. 6 7365 vs. 13936 #> 19 2 B.con.env03 140 CF 1 vs. 2 6 vs. 6 28914 vs. 29123 #> 20 2 gp41 1 vs. 2 6 vs. 6 10696 vs. 15868 #> 21 2 p24 1 vs. 2 6 vs. 6 11042 vs. 2717 #> sd_comparison median_comparison min_comparison max_comparison #> 1 71 vs. 48 3 vs. -8 -123 vs. -75 98 vs. 69 #> 2 31 vs. 152 79 vs. 36 40 vs. -23 112 vs. 385 #> 3 17 vs. 23 73 vs. 8 36 vs. -16 82 vs. 42 #> 4 94 vs. 658 -28 vs. -29 -152 vs. -1504 110 vs. 36 #> 5 61 vs. 67 8 vs. -9 -52 vs. -87 134 vs. 115 #> 6 1519 vs. 3572 1466 vs. 2075 874 vs. 873 4860 vs. 10472 #> 7 10467 vs. 8845 4041 vs. 1450 1880 vs. 832 28818 vs. 23381 #> 8 1210 vs. 348 648 vs. 530 10 vs. 171 3258 vs. 1040 #> 9 7413 vs. 1348 2543 vs. 1046 166 vs. 430 19183 vs. 3704 #> 10 1573 vs. 1894 1563 vs. 676 70 vs. 308 3910 vs. 5116 #> 11 158 vs. 1106 117 vs. 14 -36 vs. -619 329 vs. 2425 #> 12 2365 vs. 4686 2819 vs. 4898 191 vs. 590 5990 vs. 13738 #> 13 8023 vs. 10658 14378 vs. 25038 5381 vs. 8504 26022 vs. 32447 #> 14 4760 vs. 3180 6688 vs. 3266 1728 vs. 964 13559 vs. 9886 #> 15 9629 vs. 5538 15420 vs. 11001 5002 vs. 4682 26700 vs. 20801 #> 16 2184 vs. 4584 29637 vs. 28282 26267 vs. 19268 32274 vs. 31747 #> 17 3533 vs. 6004 26034 vs. 27921 23352 vs. 14839 31956 vs. 31820 #> 18 5782 vs. 9896 6556 vs. 12932 2166 vs. 2752 15885 vs. 25838 #> 19 2163 vs. 3911 28240 vs. 30191 26292 vs. 21395 31628 vs. 32295 #> 20 6993 vs. 10463 10310 vs. 13112 2048 vs. 6414 20089 vs. 29466 #> 21 9775 vs. 1583 10763 vs. 2222 1548 vs. 1102 21449 vs. 4961 #> median_min_max_comparison mean_sd_comparison #> 1 3 [-123, 98] vs. -8 [-75, 69] -2 (71) vs. -5 (48) #> 2 79 [40, 112] vs. 36 [-23, 385] 75 (31) vs. 84 (152) #> 3 73 [36, 82] vs. 8 [-16, 42] 66 (17) vs. 12 (23) #> 4 -28 [-152, 110] vs. -29 [-1504, 36] -27 (94) vs. -409 (658) #> 5 8 [-52, 134] vs. -9 [-87, 115] 21 (61) vs. -2 (67) #> 6 1466 [874, 4860] vs. 2075 [873, 10472] 2017 (1519) vs. 3381 (3572) #> 7 4041 [1880, 28818] vs. 1450 [832, 23381] 9010 (10467) vs. 5735 (8845) #> 8 648 [10, 3258] vs. 530 [171, 1040] 1039 (1210) vs. 551 (348) #> 9 2543 [166, 19183] vs. 1046 [430, 3704] 5655 (7413) vs. 1681 (1348) #> 10 1563 [70, 3910] vs. 676 [308, 5116] 1720 (1573) vs. 1577 (1894) #> 11 117 [-36, 329] vs. 14 [-619, 2425] 140 (158) vs. 303 (1106) #> 12 2819 [191, 5990] vs. 4898 [590, 13738] 3150 (2365) vs. 5153 (4686) #> 13 14378 [5381, 26022] vs. 25038 [8504, 32447] 16324 (8023) vs. 22559 (10658) #> 14 6688 [1728, 13559] vs. 3266 [964, 9886] 6745 (4760) vs. 3880 (3180) #> 15 15420 [5002, 26700] vs. 11001 [4682, 20801] 15462 (9629) vs. 11600 (5538) #> 16 29637 [26267, 32274] vs. 28282 [19268, 31747] 29700 (2184) vs. 27448 (4584) #> 17 26034 [23352, 31956] vs. 27921 [14839, 31820] 26839 (3533) vs. 26388 (6004) #> 18 6556 [2166, 15885] vs. 12932 [2752, 25838] 7365 (5782) vs. 13936 (9896) #> 19 28240 [26292, 31628] vs. 30191 [21395, 32295] 28914 (2163) vs. 29123 (3911) #> 20 10310 [2048, 20089] vs. 13112 [6414, 29466] 10696 (6993) vs. 15868 (10463) #> 21 10763 [1548, 21449] vs. 2222 [1102, 4961] 11042 (9775) vs. 2717 (1583)
paste_tbl_grp(data = descriptive_stats_by_group, vars_to_paste = c("mean", "median_min_max"), alternative= "less", keep_all = FALSE)
#> Comparison mean_comparison median_min_max_comparison #> 1 1 < 2 -2 vs. -5 3 [-123, 98] vs. -8 [-75, 69] #> 2 1 < 2 75 vs. 84 79 [40, 112] vs. 36 [-23, 385] #> 3 1 < 2 66 vs. 12 73 [36, 82] vs. 8 [-16, 42] #> 4 1 < 2 -27 vs. -409 -28 [-152, 110] vs. -29 [-1504, 36] #> 5 1 < 2 21 vs. -2 8 [-52, 134] vs. -9 [-87, 115] #> 6 1 < 2 2017 vs. 3381 1466 [874, 4860] vs. 2075 [873, 10472] #> 7 1 < 2 9010 vs. 5735 4041 [1880, 28818] vs. 1450 [832, 23381] #> 8 1 < 2 1039 vs. 551 648 [10, 3258] vs. 530 [171, 1040] #> 9 1 < 2 5655 vs. 1681 2543 [166, 19183] vs. 1046 [430, 3704] #> 10 1 < 2 1720 vs. 1577 1563 [70, 3910] vs. 676 [308, 5116] #> 11 1 < 2 140 vs. 303 117 [-36, 329] vs. 14 [-619, 2425] #> 12 1 < 2 3150 vs. 5153 2819 [191, 5990] vs. 4898 [590, 13738] #> 13 1 < 2 16324 vs. 22559 14378 [5381, 26022] vs. 25038 [8504, 32447] #> 14 1 < 2 6745 vs. 3880 6688 [1728, 13559] vs. 3266 [964, 9886] #> 15 1 < 2 15462 vs. 11600 15420 [5002, 26700] vs. 11001 [4682, 20801] #> 16 1 < 2 29700 vs. 27448 29637 [26267, 32274] vs. 28282 [19268, 31747] #> 17 1 < 2 26839 vs. 26388 26034 [23352, 31956] vs. 27921 [14839, 31820] #> 18 1 < 2 7365 vs. 13936 6556 [2166, 15885] vs. 12932 [2752, 25838] #> 19 1 < 2 28914 vs. 29123 28240 [26292, 31628] vs. 30191 [21395, 32295] #> 20 1 < 2 10696 vs. 15868 10310 [2048, 20089] vs. 13112 [6414, 29466] #> 21 1 < 2 11042 vs. 2717 10763 [1548, 21449] vs. 2222 [1102, 4961]
paste_tbl_grp(data = descriptive_stats_by_group, vars_to_paste = 'all', first_name = 'Group1', second_name = 'Group2', sep_val = " vs. ", alternative = 'less', digits = 5, keep_all = FALSE)
#> Comparison n_comparison mean_comparison #> 1 1 < 2 6 vs. 6 -1.79167 vs. -5.16667 #> 2 1 < 2 6 vs. 6 74.95833 vs. 83.58333 #> 3 1 < 2 6 vs. 6 65.79167 vs. 12.08333 #> 4 1 < 2 6 vs. 6 -26.75000 vs. -409.16667 #> 5 1 < 2 6 vs. 6 21.25000 vs. -2.12500 #> 6 1 < 2 6 vs. 6 2017.41667 vs. 3380.62500 #> 7 1 < 2 6 vs. 6 9010.16667 vs. 5735.33333 #> 8 1 < 2 6 vs. 6 1038.58333 vs. 550.91667 #> 9 1 < 2 6 vs. 6 5655.16667 vs. 1680.70833 #> 10 1 < 2 6 vs. 6 1719.87500 vs. 1577.16667 #> 11 1 < 2 6 vs. 6 140.04167 vs. 302.70833 #> 12 1 < 2 6 vs. 6 3149.50000 vs. 5152.87500 #> 13 1 < 2 6 vs. 6 16323.66667 vs. 22558.66667 #> 14 1 < 2 6 vs. 6 6745.00000 vs. 3880.45833 #> 15 1 < 2 6 vs. 6 15462.20833 vs. 11599.91667 #> 16 1 < 2 6 vs. 6 29699.79167 vs. 27448.16667 #> 17 1 < 2 6 vs. 6 26839.12500 vs. 26387.54167 #> 18 1 < 2 6 vs. 6 7364.91667 vs. 13935.75000 #> 19 1 < 2 6 vs. 6 28914.29167 vs. 29123.45833 #> 20 1 < 2 6 vs. 6 10695.62500 vs. 15868.20833 #> 21 1 < 2 6 vs. 6 11041.70833 vs. 2716.79167 #> sd_comparison median_comparison #> 1 70.52401 vs. 48.24486 2.62500 vs. -8.12500 #> 2 31.40717 vs. 151.55376 78.87500 vs. 36.50000 #> 3 17.06855 vs. 22.77151 73.00000 vs. 7.75000 #> 4 93.98191 vs. 657.60959 -28.00000 vs. -29.12500 #> 5 61.48069 vs. 67.36148 7.50000 vs. -8.87500 #> 6 1519.19892 vs. 3572.37247 1466.00000 vs. 2075.00000 #> 7 10466.69376 vs. 8845.37576 4041.12500 vs. 1449.62500 #> 8 1209.99794 vs. 347.74372 648.00000 vs. 529.75000 #> 9 7413.16625 vs. 1348.19803 2542.87500 vs. 1046.12500 #> 10 1572.95930 vs. 1894.47811 1562.87500 vs. 675.87500 #> 11 158.30488 vs. 1105.90485 117.37500 vs. 14.12500 #> 12 2364.74946 vs. 4685.93171 2819.25000 vs. 4897.62500 #> 13 8023.22147 vs. 10658.00931 14377.75000 vs. 25038.50000 #> 14 4760.00364 vs. 3180.21395 6688.12500 vs. 3265.50000 #> 15 9628.93196 vs. 5537.86394 15419.75000 vs. 11000.62500 #> 16 2184.43202 vs. 4583.82720 29636.75000 vs. 28282.00000 #> 17 3532.87984 vs. 6003.76938 26033.62500 vs. 27920.87500 #> 18 5782.41369 vs. 9896.06080 6555.87500 vs. 12931.50000 #> 19 2162.59904 vs. 3910.76717 28240.00000 vs. 30191.12500 #> 20 6992.66463 vs. 10462.80168 10309.87500 vs. 13111.75000 #> 21 9775.01390 vs. 1583.32778 10762.87500 vs. 2222.50000 #> min_comparison max_comparison #> 1 -122.75000 vs. -74.75000 98.00000 vs. 68.75000 #> 2 39.50000 vs. -23.25000 112.00000 vs. 385.00000 #> 3 35.75000 vs. -16.00000 81.75000 vs. 41.50000 #> 4 -152.25000 vs. -1504.50000 110.50000 vs. 36.25000 #> 5 -52.50000 vs. -87.25000 133.50000 vs. 115.00000 #> 6 873.75000 vs. 873.25000 4860.50000 vs. 10472.50000 #> 7 1879.50000 vs. 831.50000 28817.50000 vs. 23381.00000 #> 8 9.75000 vs. 171.00000 3258.50000 vs. 1040.25000 #> 9 166.25000 vs. 430.00000 19183.25000 vs. 3704.00000 #> 10 69.50000 vs. 307.75000 3910.50000 vs. 5115.50000 #> 11 -36.25000 vs. -618.75000 329.00000 vs. 2425.00000 #> 12 191.25000 vs. 589.75000 5989.75000 vs. 13738.25000 #> 13 5380.75000 vs. 8504.50000 26021.75000 vs. 32447.00000 #> 14 1728.00000 vs. 963.50000 13559.00000 vs. 9886.25000 #> 15 5002.25000 vs. 4681.75000 26699.75000 vs. 20800.75000 #> 16 26267.00000 vs. 19268.50000 32273.50000 vs. 31747.25000 #> 17 23351.75000 vs. 14839.25000 31956.00000 vs. 31820.00000 #> 18 2166.25000 vs. 2752.50000 15885.25000 vs. 25838.25000 #> 19 26292.50000 vs. 21395.25000 31627.50000 vs. 32295.00000 #> 20 2047.75000 vs. 6414.25000 20088.75000 vs. 29466.50000 #> 21 1548.25000 vs. 1101.75000 21448.75000 vs. 4961.00000 #> median_min_max_comparison #> 1 2.62500 [-122.75000, 98.00000] vs. -8.12500 [-74.75000, 68.75000] #> 2 78.87500 [39.50000, 112.00000] vs. 36.50000 [-23.25000, 385.00000] #> 3 73.00000 [35.75000, 81.75000] vs. 7.75000 [-16.00000, 41.50000] #> 4 -28.00000 [-152.25000, 110.50000] vs. -29.12500 [-1504.50000, 36.25000] #> 5 7.50000 [-52.50000, 133.50000] vs. -8.87500 [-87.25000, 115.00000] #> 6 1466.00000 [873.75000, 4860.50000] vs. 2075.00000 [873.25000, 10472.50000] #> 7 4041.12500 [1879.50000, 28817.50000] vs. 1449.62500 [831.50000, 23381.00000] #> 8 648.00000 [9.75000, 3258.50000] vs. 529.75000 [171.00000, 1040.25000] #> 9 2542.87500 [166.25000, 19183.25000] vs. 1046.12500 [430.00000, 3704.00000] #> 10 1562.87500 [69.50000, 3910.50000] vs. 675.87500 [307.75000, 5115.50000] #> 11 117.37500 [-36.25000, 329.00000] vs. 14.12500 [-618.75000, 2425.00000] #> 12 2819.25000 [191.25000, 5989.75000] vs. 4897.62500 [589.75000, 13738.25000] #> 13 14377.75000 [5380.75000, 26021.75000] vs. 25038.50000 [8504.50000, 32447.00000] #> 14 6688.12500 [1728.00000, 13559.00000] vs. 3265.50000 [963.50000, 9886.25000] #> 15 15419.75000 [5002.25000, 26699.75000] vs. 11000.62500 [4681.75000, 20800.75000] #> 16 29636.75000 [26267.00000, 32273.50000] vs. 28282.00000 [19268.50000, 31747.25000] #> 17 26033.62500 [23351.75000, 31956.00000] vs. 27920.87500 [14839.25000, 31820.00000] #> 18 6555.87500 [2166.25000, 15885.25000] vs. 12931.50000 [2752.50000, 25838.25000] #> 19 28240.00000 [26292.50000, 31627.50000] vs. 30191.12500 [21395.25000, 32295.00000] #> 20 10309.87500 [2047.75000, 20088.75000] vs. 13111.75000 [6414.25000, 29466.50000] #> 21 10762.87500 [1548.25000, 21448.75000] vs. 2222.50000 [1101.75000, 4961.00000] #> mean_sd_comparison #> 1 -1.79167 (70.52401) vs. -5.16667 (48.24486) #> 2 74.95833 (31.40717) vs. 83.58333 (151.55376) #> 3 65.79167 (17.06855) vs. 12.08333 (22.77151) #> 4 -26.75000 (93.98191) vs. -409.16667 (657.60959) #> 5 21.25000 (61.48069) vs. -2.12500 (67.36148) #> 6 2017.41667 (1519.19892) vs. 3380.62500 (3572.37247) #> 7 9010.16667 (10466.69376) vs. 5735.33333 (8845.37576) #> 8 1038.58333 (1209.99794) vs. 550.91667 (347.74372) #> 9 5655.16667 (7413.16625) vs. 1680.70833 (1348.19803) #> 10 1719.87500 (1572.95930) vs. 1577.16667 (1894.47811) #> 11 140.04167 (158.30488) vs. 302.70833 (1105.90485) #> 12 3149.50000 (2364.74946) vs. 5152.87500 (4685.93171) #> 13 16323.66667 (8023.22147) vs. 22558.66667 (10658.00931) #> 14 6745.00000 (4760.00364) vs. 3880.45833 (3180.21395) #> 15 15462.20833 (9628.93196) vs. 11599.91667 (5537.86394) #> 16 29699.79167 (2184.43202) vs. 27448.16667 (4583.82720) #> 17 26839.12500 (3532.87984) vs. 26387.54167 (6003.76938) #> 18 7364.91667 (5782.41369) vs. 13935.75000 (9896.06080) #> 19 28914.29167 (2162.59904) vs. 29123.45833 (3910.76717) #> 20 10695.62500 (6992.66463) vs. 15868.20833 (10462.80168) #> 21 11041.70833 (9775.01390) vs. 2716.79167 (1583.32778)
# Same example with tidyverse (dplyr+tidyr) with some custom functions library(dplyr) library(tidyr) q95_fun = function(x) quantile(x, 0.95) N = function(x) length(x) exampleData_BAMA %>% mutate(group = paste0("Group", group)) %>% group_by(group, visitno, antigen) %>% summarise_at("magnitude", funs(N, mean, sd, median, min, max, q95_fun)) %>% gather(variable, value, -(group:antigen)) %>% # these three chains create a wide dataset unite(temp, group, variable) %>% spread(temp, value) %>% mutate(Group1 = "Group 1", Group2 = "Group 2") %>% paste_tbl_grp()
#> Warning: funs() is soft deprecated as of dplyr 0.8.0 #> please use list() instead #> #> # Before: #> funs(name = f(.)) #> #> # After: #> list(name = ~f(.)) #> This warning is displayed once per session.
#> visitno antigen Comparison max_comparison #> 1 0 A1.con.env03 140 CF Group 1 vs. Group 2 98 vs. 69 #> 2 0 A244 D11gp120_avi Group 1 vs. Group 2 112 vs. 385 #> 3 0 B.63521_D11gp120/293F Group 1 vs. Group 2 82 vs. 42 #> 4 0 B.con.env03 140 CF Group 1 vs. Group 2 134 vs. 115 #> 5 0 B.MN V3 gp70 Group 1 vs. Group 2 110 vs. 36 #> 6 0 gp41 Group 1 vs. Group 2 4860 vs. 10472 #> 7 0 p24 Group 1 vs. Group 2 28818 vs. 23381 #> 8 1 A1.con.env03 140 CF Group 1 vs. Group 2 3258 vs. 1040 #> 9 1 A244 D11gp120_avi Group 1 vs. Group 2 19183 vs. 3704 #> 10 1 B.63521_D11gp120/293F Group 1 vs. Group 2 3910 vs. 5116 #> 11 1 B.con.env03 140 CF Group 1 vs. Group 2 5990 vs. 13738 #> 12 1 B.MN V3 gp70 Group 1 vs. Group 2 329 vs. 2425 #> 13 1 gp41 Group 1 vs. Group 2 26022 vs. 32447 #> 14 1 p24 Group 1 vs. Group 2 13559 vs. 9886 #> 15 2 A1.con.env03 140 CF Group 1 vs. Group 2 26700 vs. 20801 #> 16 2 A244 D11gp120_avi Group 1 vs. Group 2 32274 vs. 31747 #> 17 2 B.63521_D11gp120/293F Group 1 vs. Group 2 31956 vs. 31820 #> 18 2 B.con.env03 140 CF Group 1 vs. Group 2 31628 vs. 32295 #> 19 2 B.MN V3 gp70 Group 1 vs. Group 2 15885 vs. 25838 #> 20 2 gp41 Group 1 vs. Group 2 20089 vs. 29466 #> 21 2 p24 Group 1 vs. Group 2 21449 vs. 4961 #> mean_comparison median_comparison min_comparison N_comparison #> 1 -2 vs. -5 3 vs. -8 -123 vs. -75 6 vs. 6 #> 2 75 vs. 84 79 vs. 36 40 vs. -23 6 vs. 6 #> 3 66 vs. 12 73 vs. 8 36 vs. -16 6 vs. 6 #> 4 21 vs. -2 8 vs. -9 -52 vs. -87 6 vs. 6 #> 5 -27 vs. -409 -28 vs. -29 -152 vs. -1504 6 vs. 6 #> 6 2017 vs. 3381 1466 vs. 2075 874 vs. 873 6 vs. 6 #> 7 9010 vs. 5735 4041 vs. 1450 1880 vs. 832 6 vs. 6 #> 8 1039 vs. 551 648 vs. 530 10 vs. 171 6 vs. 6 #> 9 5655 vs. 1681 2543 vs. 1046 166 vs. 430 6 vs. 6 #> 10 1720 vs. 1577 1563 vs. 676 70 vs. 308 6 vs. 6 #> 11 3150 vs. 5153 2819 vs. 4898 191 vs. 590 6 vs. 6 #> 12 140 vs. 303 117 vs. 14 -36 vs. -619 6 vs. 6 #> 13 16324 vs. 22559 14378 vs. 25038 5381 vs. 8504 6 vs. 6 #> 14 6745 vs. 3880 6688 vs. 3266 1728 vs. 964 6 vs. 6 #> 15 15462 vs. 11600 15420 vs. 11001 5002 vs. 4682 6 vs. 6 #> 16 29700 vs. 27448 29637 vs. 28282 26267 vs. 19268 6 vs. 6 #> 17 26839 vs. 26388 26034 vs. 27921 23352 vs. 14839 6 vs. 6 #> 18 28914 vs. 29123 28240 vs. 30191 26292 vs. 21395 6 vs. 6 #> 19 7365 vs. 13936 6556 vs. 12932 2166 vs. 2752 6 vs. 6 #> 20 10696 vs. 15868 10310 vs. 13112 2048 vs. 6414 6 vs. 6 #> 21 11042 vs. 2717 10763 vs. 2222 1548 vs. 1102 6 vs. 6 #> q95_fun_comparison sd_comparison #> 1 76 vs. 57 71 vs. 48 #> 2 109 vs. 307 31 vs. 152 #> 3 80 vs. 40 17 vs. 23 #> 4 108 vs. 90 61 vs. 67 #> 5 89 vs. 32 94 vs. 658 #> 6 4279 vs. 8669 1519 vs. 3572 #> 7 24778 vs. 19017 10467 vs. 8845 #> 8 2802 vs. 989 1210 vs. 348 #> 9 16618 vs. 3538 7413 vs. 1348 #> 10 3649 vs. 4420 1573 vs. 1894 #> 11 5948 vs. 11682 2365 vs. 4686 #> 12 322 vs. 1927 158 vs. 1106 #> 13 25861 vs. 32234 8023 vs. 10658 #> 14 12531 vs. 8440 4760 vs. 3180 #> 15 26055 vs. 19145 9629 vs. 5538 #> 16 32146 vs. 31556 2184 vs. 4584 #> 17 31428 vs. 31230 3533 vs. 6004 #> 18 31589 vs. 32016 2163 vs. 3911 #> 19 14619 vs. 25611 5782 vs. 9896 #> 20 19322 vs. 28684 6993 vs. 10463 #> 21 21080 vs. 4811 9775 vs. 1583 #> median_min_max_comparison mean_sd_comparison #> 1 3 [-123, 98] vs. -8 [-75, 69] -2 (71) vs. -5 (48) #> 2 79 [40, 112] vs. 36 [-23, 385] 75 (31) vs. 84 (152) #> 3 73 [36, 82] vs. 8 [-16, 42] 66 (17) vs. 12 (23) #> 4 8 [-52, 134] vs. -9 [-87, 115] 21 (61) vs. -2 (67) #> 5 -28 [-152, 110] vs. -29 [-1504, 36] -27 (94) vs. -409 (658) #> 6 1466 [874, 4860] vs. 2075 [873, 10472] 2017 (1519) vs. 3381 (3572) #> 7 4041 [1880, 28818] vs. 1450 [832, 23381] 9010 (10467) vs. 5735 (8845) #> 8 648 [10, 3258] vs. 530 [171, 1040] 1039 (1210) vs. 551 (348) #> 9 2543 [166, 19183] vs. 1046 [430, 3704] 5655 (7413) vs. 1681 (1348) #> 10 1563 [70, 3910] vs. 676 [308, 5116] 1720 (1573) vs. 1577 (1894) #> 11 2819 [191, 5990] vs. 4898 [590, 13738] 3150 (2365) vs. 5153 (4686) #> 12 117 [-36, 329] vs. 14 [-619, 2425] 140 (158) vs. 303 (1106) #> 13 14378 [5381, 26022] vs. 25038 [8504, 32447] 16324 (8023) vs. 22559 (10658) #> 14 6688 [1728, 13559] vs. 3266 [964, 9886] 6745 (4760) vs. 3880 (3180) #> 15 15420 [5002, 26700] vs. 11001 [4682, 20801] 15462 (9629) vs. 11600 (5538) #> 16 29637 [26267, 32274] vs. 28282 [19268, 31747] 29700 (2184) vs. 27448 (4584) #> 17 26034 [23352, 31956] vs. 27921 [14839, 31820] 26839 (3533) vs. 26388 (6004) #> 18 28240 [26292, 31628] vs. 30191 [21395, 32295] 28914 (2163) vs. 29123 (3911) #> 19 6556 [2166, 15885] vs. 12932 [2752, 25838] 7365 (5782) vs. 13936 (9896) #> 20 10310 [2048, 20089] vs. 13112 [6414, 29466] 10696 (6993) vs. 15868 (10463) #> 21 10763 [1548, 21449] vs. 2222 [1102, 4961] 11042 (9775) vs. 2717 (1583)